798 research outputs found

    Microscopic Calculation of Total Ordinary Muon Capture Rates for Medium - Weight and Heavy Nuclei

    Full text link
    Total Ordinary Muon Capture (OMC) rates are calculated on the basis of the Quasiparticle Random Phase Approximation for several spherical nuclei from 90^Zr to 208^Pb. It is shown that total OMC rates calculated with the free value of the axial-vector coupling constant g_A agree well with the experimental data for medium-size nuclei and exceed considerably the experimental rates for heavy nuclei. The sensitivity of theoretical OMC rates to the nuclear residual interactions is discussed.Comment: 27 pages and 3 figure

    Photon angular distribution and nuclear-state alignment in nuclear excitation by electron capture

    Get PDF
    The alignment of nuclear states resonantly formed in nuclear excitation by electron capture (NEEC) is studied by means of a density matrix technique. The vibrational excitations of the nucleus are described by a collective model and the electrons are treated in a relativistic framework. Formulas for the angular distribution of photons emitted in the nuclear relaxation are derived. We present numerical results for alignment parameters and photon angular distributions for a number of heavy elements in the case of E2 nuclear transitions. Our results are intended to help future experimental attempts to discern NEEC from radiative recombination, which is the dominant competing process

    Swift Highly Charged Ion Channelling

    Full text link
    We review recent experimental and theoretical progress made in the scope of swift highly charged ion channelling in crystals. The usefulness of such studies is their ability to yield impact parameter information on charge transfer processes, and also on some time related problems. We discuss the cooling and heating phenomena at MeV/u energies, results obtained with decelerated H-like ion beams at GSI and with ions having an excess of electrons at GANIL, the superdensity effect along atomic strings and Resonant Coherent Excitation.Comment: to be published in Journal of Physics

    Correlated Electrons Step-by-Step: Itinerant-to-Localized Transition of Fe Impurities in Free-Electron Metal Hosts

    Get PDF
    High-resolution photoemission spectroscopy and realistic ab-initio calculations have been employed to analyze the onset and progression of d-sp hybridization in Fe impurities deposited on alkali metal films. The interplay between delocalization, mediated by the free-electron environment, and Coulomb interaction among d-electrons gives rise to complex electronic configurations. The multiplet structure of a single Fe atom evolves and gradually dissolves into a quasiparticle peak near the Fermi level with increasing the host electron density. The effective multi-orbital impurity problem within the exact diagonalization scheme describes the whole range of hybridizations.Comment: 10 pages, 4 figure

    Dynamics of Josephson junctions and single-flux-quantum networks with superconductor-insulator-normal metal junction shunts

    Full text link
    Within the framework of the microscopic model of tunneling, we modelled the behavior of the Josephson junction shunted by the Superconductor-Insulator-Normal metal (SIN) tunnel junction. We found that the electromagnetic impedance of the SIN junction yields both the frequency-dependent damping and dynamic reactance which leads to an increase in the effective capacitance of the circuit. We calculated the dc I-V curves and transient characteristics of these circuits and explained their quantitative differences to the curves obtained within the resistively shunted junction model. The correct operation of the basic single-flux-quanta circuits with such SIN-shunted junctions, i.e. the Josephson transmission line and the toggle flip-flop, have also been modelled.Comment: 8 pages incl. 7 figure

    A graphene electron lens

    Get PDF
    International audienceAn epitaxial layer of graphene was grown on a pre patterned 6H-SiC(0001) crystal. The graphene smoothly covers the hexagonal nano-holes in the substrate without the introduction of small angle grain boundaries or dislocations. This is achieved by an elastic deformation of the graphene by ~0.3% in accordance to its large elastic strain limit. This elastic stretching of the graphene leads to a modification of the band structure and to a local lowering of the electron group velocity of the graphene. We propose to use this effect to focus two-dimensional electrons in analogy to simple optical lenses
    corecore